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Standard Topology Optimization Problem

◮ Obtain an optimal distribution of material, on a domain Ω

◮ Maximizing the stiffness of the structure

◮ Subject to a volume constraint
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Γt1
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The SIMP model - Bendsøe (1989)

◮ The domain Ω is discretized.

◮ To each element we associate a discrete variable χ that is set
to 1 if the element belongs to the structure, or 0 if the
element is void.

◮ Since it is difficult to solve a large nonlinear problem with
discrete variables, χ is replaced by a continuous variable
ρ ∈ [0, 1], called the “element’s density”.

◮ In order to eliminate the intermediate values of ρ, Bendsøe
(1989) introduced the SIMP method (Solid Isotropic Material

with Penalization), which replaces ρ by the function ρp that
controls the distribution of material.

◮ In general, p = 3 is sufficient to eliminate intermediate
densities.



Small Displacements vs. Large Displacements

◮ The most part of papers suppose that the relation between
strains and displacements is linear (small displacements).

◮ This assumption is not always valid for some kinds of
structures (for example, compliant mechanisms).

◮ For these structures, it is necessary to consider a nonlinear
relation between strains and displacements (large
displacements).

◮ However, because of the difficulties related to the numerical
implementation, a small number of papers deal with the large
displacements assumption.

◮ In this work, the structures are under large displacements.



Topology Optimization of Structures
Bendsøe & Kikuchi (1988)

Small displacements

min
ρ

fTu(ρ)

s. t. K(ρ)u(ρ) = f
nel∑

i=1

vi ρi ≤ V ∗

0 < ρmin ≤ ρ ≤ 1

min
ρ

u(ρ)TK(ρ)u(ρ)

s. t.

nel∑

i=1

vi ρi ≤ V ∗

0 < ρmin ≤ ρ ≤ 1

Large Displacements

min
ρ

fTu(ρ)

s. t. K(u(ρ),ρ)u(ρ) = f
nel∑

i=1

vi ρi ≤ V ∗

0 < ρmin ≤ ρ ≤ 1

min
ρ

u(ρ)TK(u(ρ),ρ)u(ρ)

s. t.

nel∑

i=1

vi ρi ≤ V ∗

0 < ρmin ≤ ρ ≤ 1



Small Displacements

◮ All the domain elements have the same local stiffness matrix
k0 (it is symmetric), that is calculated only once during all the
optimization process.

◮ Global stiffness matrix: K(ρ) =

nel∑

i=1

ρpi Pik0P
T
i

◮ K(ρ) is symmetric and, after imposing the boundary
conditions, K(ρ) becomes positive-definite.

◮ It is necessary to solve the linear system K(ρ)u(ρ) = f (static
equilibrium conditions) to evaluate the objective function.

◮ Usually, this linear system is solved using the Cholesky
factorization.

◮ K(ρ) is updated at every global iteration of the optimization
algorithm adopted.



Large Displacements

◮ Issue 1: The local stiffness matrices are different for each domain element,
and they depend on the nodal displacements: k(ui ) = k0 + kL(ui ) .

◮ Global stiffness matrix: K(u(ρ), ρ) =

nel∑

i=1

ρ
p

i Pik(ui )P
T
i

◮ Issue 2: It is necessary to solve the nonlinear system K(u(ρ) ,ρ)u(ρ) = f

(static equilibrium conditions) to evaluate the objective function. This
nonlinear system can be solved using the Newton method.

◮ In the Newton method, fixing a vector of densities ρ and giving an initial
vector of nodal displacements u0, we solve the sequence of linear systems

KT (uk , ρ)∆uk = f −K(uk , ρ)uk

and take
uk+1 = uk +∆uk

until the condition ‖f −K(uk , ρ)uk‖ < ε becomes true.

◮ KT (uk , ρ): global tangent stiffness matrix (symmetric)



Large Displacements

◮ Issue 3: The matrices K e KT are updated at every iteration of the
Newton method.

◮ Issue 4: Even imposing the boundary conditions, KT cannot be
positive-definite during the iterations of the Newton method.

◮ When it happens, we cannot use the Cholesky factorization to solve
the linear systems. For example, we could adopt the LDLT

factorization.

◮ The Newton method can have a unstable behavior when KT is not
positive-definite.

◮ Then, in this case, we could remove the nodes surrounded by void -
Buhl, Pedersen & Sigmund (2000) - or apply the arc-length method
- Riks (1979), Crisfield (1981).

◮ But, in order to stabilize the Newton method, we adopted a
different approach in this work (scalling the densities).



Scalling the densities

◮ ρi : original density of the i-th element.

◮ yi = aρi + b : scaled density of the i-th element, where a and b are

chosen to map [ρmin, 1] into [ρ̄min, 1] and ρ̄min is the new minimum
value for the densities.

◮ a =
1− ρ̄min

1− ρmin

e b = 1− a .

◮ We use ρmin = 0.001 and, for example, ρ̄min = 0.25 .

Original Problem

min
ρ

u(ρ)TK(u(ρ),ρ)u(ρ)

s. t.

nel∑

i=1

vi ρi ≤ V ∗

0 < ρmin ≤ ρ ≤ 1

Scaled Problem

min
y

u(y)TK(u(y), y)u(y)

s. t.

nel∑

i=1

vi yi ≤ aV ∗ + (1− a)V̄

0 < ρ̄min ≤ y ≤ 1



Sequential Piecewise Linear Programming

Complicated problem (for example, Topology Optimization)

⇓

Sequential Quadratic Programming (SQP)

⇓

Sequential Quadratic Programming with diagonal Hessian

⇓

Sequential Piecewise Linear Programming (SPLP)
Advantage: the subproblems are converted into a LP
Little disadvantage: the number of variables increases



Sequential Piecewise Linear Programming

◮ Subproblem solved in the SQP method:

min
s

wT s + Γ̂(s)

s. t As = c

sl ≤ s ≤ su

◮ Γ̂(s) = 1
2s

TBs , where B ∈ R
n×n is symmetric and

semipositive-definite.



Sequential Piecewise Linear Programming

◮ Choosing B as a diagonal matrix, we obtain a separable quadratic

Γ̂(s) =

n∑

i=1

γi (si ) , where γi (si ) ≡
1

2
bi s

2
i .

◮ Each term γi (si ) is approximated by a piecewise linear function

Γi (si ) = max
j∈{0, ..., 2r}

{
(bi t

(j)
i ) si −

1

2
bi (t

(j)
i )2

}

that interpolates γi e γ′
i at the points t

(j)
i , such that

Γ(s) ≡
n∑

i=1

Γi (si ) and Γ(s) ≈ Γ̂(s) ,

with Γ(s) convex and nonnegative.

◮ We take the interpolation points t
(j)
i ∈ [Li , Ui ] such that

sli ≤ Li ≤ Ui ≤ sui .



Sequential Piecewise Linear Programming
◮ Piecewise linear problem:

min wT s + Γ(s)
s. t As = c

sl ≤ s ≤ su

◮ Byrd et al. (2011): to ensure that wT s + Γ(s) is bounded
below, we adjust the bounds Li and Ui such that [Li , Ui ] also
contains the minimizer of the quadratic

qi (si ) =
1

2
bi s

2
i + wi si .

◮ Noting that

wT s + Γ(s) =
n∑

i=1

[wi si + Γi (si )]

and remembering that we use 2r + 1 interpolation points, we
observe that each term wi si + Γi (si ) is composed by 2r + 1
line segments.



Sequential Piecewise Linear Programming

◮ Change of variables: s =
2r∑

j=0

δj , where each new variable δi , j

is associated to the j-th line segment of the graph of Γi (si ).

◮ Then, the piecewise linear problem is converted into the LP

min
2r∑

j=0

αT
j δj

s. t A

2r∑

j=0

δj = c

sl ≤ δ0 ≤ z0
0 ≤ δj ≤ zj − zj−1 , j = 1, . . . , 2r − 1
0 ≤ δ2r ≤ su − z2r ,

that has (2r + 1)n variables .



Sequential Piecewise Linear Programming

◮ General optimization problem:

min f (x)
s. t c(x) = 0

xl ≤ x ≤ xu

where f : Rn → R and c : Rn → R
m are functions with first

partial derivatives Lipschitz continuous.

◮ Normal step (solution of a LP - infeasibility reduction)

◮ Tangent step (solution of a piecewise LP - objective function
reduction)

◮ Trust regions (to ensure the global convergence of the
algorithm)

◮ Merit function (to decide if the new point will be accepted or
rejected)



Sequential Piecewise Linear Programming

1. Normal step sn - Infeasibility reduction

◮ Solve the LP

min M̄(x, s, z) = eTz

s. t. A(x)s + E(x)z + c(x) = 0

max{−0.8∆ , xl − x} ≤ s ≤ min{0.8∆, xu − x}
z ≥ 0

2. Tangent step sc - Objective function reduction

◮ If M̄(x(k), sn, z) = 0, solve the piecewise linear problem

min ∇f (x)T s + Γ(s)
s. t. A(x)s + c(x) = 0

sl ≤ s ≤ su

that is converted into a LP .

◮ Otherwise, set sc ← sn .



Computational Results

◮ Comparison between the Sequential Piecewise Linear
Programming (SPLP) proposed here and the globally
convergent version of the Sequential Linear Programming
(SLP) presented by Gomes & Senne (2011).

◮ We used 3 interpolation points (r = 1) for each variable in the
SPLP algorithm.

◮ The penalty parameter p of the SIMP model was set to 1, 2
and 3, consecutively, combined with the weighted mean
density filter - Bruns & Tortorelli (2003).

◮ The linear systems of the Newton method were solved using
the package CHOLMOD 1.7 in C++ - Davis (2008)



Computational Results

◮ The results were obtained by solving the scaled problems.

◮ The LP subproblems were solved using the package CPLEX
12.1 in C++.

◮ Stopping Criterion: ‖gP(x
(k))‖∞ < 10−3 , where gP(x

(k)) =
projected gradient of the objective function onto the null
space of the constraints, solution of

min 1
2d

Td+∇f (x)Td
s. t. A(x)d = 0

sl ≤ d ≤ su

or maximum number of iterations = 1600.



Example 1: Cantilever beam
Buhl, Pedersen & Sigmund (2000)

1.0 m

0.25 mF

◮ F = 12000 and 240000N

◮ Thickness: e = 0.1m

◮ Young modulus: E = 3.0× 109 N/m2

◮ Poisson coefficient: ν = 0.4

◮ Volume fraction = 50%

◮ Domain discretized in 1600 rectangular finite elements



F = 12000 N

SPLP SLP

obj. func. 1.9620× 102 1.9616× 102

ext. iter. 597 517

int. iter. 610 528

time (sec.) 125.02 109.34



F = 240000 N

SPLP SLP

obj. func. 7.0280× 104 7.0295× 104

ext. iter. 296 491

int. iter. 311 503

time (sec.) 81.35 126.22



Example 2: Plate - Gea & Luo (2001)

80 cm

20 cm

F = 200 N

◮ Thickness: e = 0.1 cm

◮ Young modulus: E = 1.0× 105 N/cm2

◮ Poisson coefficient: ν = 0.3

◮ Volume fraction: = 20%

◮ Domain discretized in 1600 rectangular finite elements



Small displacements

Large displacements



Small displ. Large displ.

SPLP SLP SPLP SLP

obj. func. 5.0983× 102 5.0983× 102 4.3158× 102 4.3414× 102

ext. iter. 159 190 661 890
int. iter. 172 193 675 897
time (sec.) 7.64 6.95 136.95 167.91



Conclusions and Future Work

◮ The results show that the SPLP algorithm presented here is
promising and competitive in relation to the SLP one.

◮ Maybe it is necessary to perform a fine tuning on choosing the
interpolation points, the diagonal Hessian approximation of
the objective function and the update scheme of the trust
region radius to improve the performance of the SPLP
algorithm.

◮ We will prove the global convergence property of the SPLP
algorithm and make tests for compliant mechanisms.



Thanks a lot!!!
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