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Some issues in Interior-point methods

@ How to combine predictor, corrector and other directions to generate a
better direction?
o Different types of directions need to be combined in an efficient way,
however it seems to be no magical formula valid for all problems

@ How to keep interactions within “good conditions™?

e lterates have to be kept within some predefined conditions (neighborhoods
of the central path, heuristics) that are successful in practice.

Some background

@ [Colombo and Gondzio, 2008]: conditions that iterates should meet for
good practical performance

@ [Jarre and Wechs, 1999]: solve a small LP (simplex) to combine
directions

@ [Villas-Bbas and Perin, 2003]: Postpone the choice of the barrier
parameter solving a polynomial optimization subproblem in auto-dual
framework
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Outline of our method

Develop and implement a method for Linear Programming problems that
considers the points above, but based on — and extensively using — additional
tools:

@ A polynomial predictive merit function that allow us to know in advance
some properties of the next iterate.
@ Use of [Colombo and Gondzio, 2008]'s symmetric neighborhood, that
defines conditions for the iterates, in terms of polynomial constraints
o Keystone for good performance of any of their implementations

@ Polynomials depend on the following parameters/variables (c, i, o)
e « is the step length,
e L is the parameter for a more general central path,
e o models the weight of the the corrector direction (predictor-corrector
method)
@ The merit function constrained to the symmetric neighbourhood defines a
polynomial optimizations subproblem, whose solutions give us the next
iterate in a optimal way
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Problem Formulation

@ The standard linear programming primal and dual problems are

mmin cx r(na}){ bTy
Az = b Primal vz
st { v (Primal) ATy 42— b (Dual)
z>0 s.t.
z >0, yfree

where A € R™*™, m < n s a full rank matrix, ¢, z, 2 € R™ and y,b € R™.

@ The first order optimality conditions for this problem, the so called KKT
conditions, can be written as

Ax =b, (
ATy+z2=c¢, (
XZe =0, (
(z,2) 2 0. (
where X = diag(z), Z = diag(z) ande = (1,...,1)T.
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We define, for any (z, v, ), the vectors of residuals of (1), 7p, rp and r¢, as

rp=Ax —b, (2a)
rp=ATy+z—c, (2b)
rc = XZe. (2c)
Let (29, 9°, 2°) be an initial point such as (2, 2°) > 0. Then
0

% = Az® — b,
rd = ATy" + 20 — ¢,

rd = X%2% > 0.
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Sign of KKT

To ensure that both r% and 7% are non negative, we define diagonal matrices H p and
Hp, such as each entry of its diagonal is formed by

, it (r%); >0 1, if(@%),;>0
(Hp)i = . ( 0P>Z ; (Hp); = - (.UD)J ’

-1, if(r%): <0 -1, if(rp); <O
fore =1,...,mandforj=1,...,n.

@ Hpr% >0and Hcrd >0

@ The solution of the KKT system (1) and of

Hp(Az —b) =0, (3a)
Hp(ATy+2—-¢)=0, (3b)
XZe =0, (3c)
(z,2) >0, (3d)

are the same.

@ We are only multiplying by a scalar each row of the usual KKT system.

v
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Homotopy continuation method

We suggest a homotopy continuation method to solve the scaled KKT system
(3) by approximately solving at each iteration, for any point (z, y, z) interior
and any g > 0 the system

Hp(Az —b) =0, (4a)
Hp(ATy + 2 —¢) =0, (4b)
XZe = pe, (4c)
(x,2) >0 (4d)

L. R. SANTOS (University of Campinas) A PO subproblem in IPM LPOO/Campinas-SP —7.12.2012 10/30



Affine-Scale Directions

@ The affine-scaling (Newton) direction to approximately solve system (1) is
found when one solves the following nonlinear system

AN +rp =0 (5a)
ATAP + A+ rp =0 (5b)
ZAz + XA +re =0 (5c)

@ Solve through Normal Equations (direct method)

@ Involves one Cholesky factorization and one backsolve.
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@ Given (z,y,z)and u >0
@ How to find and ideal single step Aw = (Az, Ay, Az), such as
W =w+ Aw,
that is solution of
Az —-b=0
ATj4+2—c=0
XZe = pe

(6)

«O» «Fr «=r «=)>» Q>



Predictor-Corrector directions to homotopy

@ Define Aw = Aw® + Aw®, where Aw? is the affine-scaling direction
and Aw?® é the ideal corrector direction.
@ Using some simplifications we obtain the Nonlinear system

AAz¢ =0
ATAY  + A2¢ =0 (7)
XAz + ZAz¢ 4+ AXAz = pe
Vector AX Az is a second order direction similar to the ones used on
[Mehrotra, 1992, Gondzio, 1996] works.

Our contribution
@ For some scalar ¢ > 0 bounded, we are regarding the approximation

AXAz ~ o AXHAA

as acceptable.
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A o-weighted correction

@ This approximation transforms the nonlinear system (8) into the linear
system

AAz¢ =0
ATAY  + A2¢ =0 (8)
XAz + ZAx¢ + o AX¥TA = pe

e Ifo =1and u = (z*)7(2*)/n)3/(x” 2z /n) we have Mehrotra’s method

@ In Gondzio’s method, 1 is chosen as in Mehrotra’s, however AX Az is
multiple times approached by directions that are projections component
wise, the complementarity onto the neighbourhood N (7).
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@ We can split the corrector direction as

Aw® = pAw" + cAw?,
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w and o directions

@ We can split the corrector direction as

Aw® = pAw” + o Aw?, 9)

@ Why? We can write the system as

A 0 0 [Azx® 0
VE(w)Aw®= [0 AT 1| |Ay¢| = 0
Z 0 X| |Az¢ e — o AXAHA A

;- (10)

providing the equality holds for every (u, o).

@ Find vectors Aw* e Aw’ when we solve systems VF (w)Aw* = (0,0,¢) e
VF(w)Aw® = (0,0, —AX*A23) and the same Choleksy factorization that
was used on the affine-scaling direction.
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@ The next point for each variable would be

T=x+alAx (11a)

J=y+alAy (11b)

Z=z+alAz (11c)
=} F = = = 9Dae



@ The next point for each variable would be

r + o Ar¥ 4 pAxt + cAz”) (11a)
ﬂ =y + a(Ay* + pAy* + o Ay) (11b)
=z + a(AZ* + pAzt + 0 A7) (11c)



Purpose of these transformations

@ The next point for each variable would be

=1+ a(Ar* + pAr* + o Az?) (11a)
z) =y + o(Ay™ + Ay + o Ay”) (11b)
=2+ (A2 + pAzt + o AZ%) (11c)

e Same Cholesky factorization to find the 3 components of A.
e Up to three backsolves, but depending on “good direction” found
@ To be chosen:
o (u, o) that defines such new directions
o the step length a.
e Expressed with the variables («, i1, o) any “educated guess” of an
ideal straight direction from a point (z, y, z) to the u-homotopy,
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The Residual for the Signed KKT System

Definition

We define p, the vector of residuals of the Signed KKT system (3) for a point
(2,y,2) as

pP(‘T’y7 Z) = HP(A:C - b)
p(xayvz>: pD(.T,y,Z):HD(ATy+Z—C) (12)
pC(xaywz) = XZe

Let pr, = (pp, pp)T € R™*™ be the linear residual of the Scaled KKT system.
We define de vectors of residuals at iteration k as p*. By construction p° > 0
for (2, %, 2°). We also define the next (predictive) residual at iteration k as

~

p=p(

k+1 , k+1 k41
VT YT 2T,

)
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We define the merit function of a point (z,y, z) as

Qo(x7y7 Z) =

m-4+n

ol + 22
PL 1 -

(13)
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Polynomial Merit Function

Definition (Merit Function)

We define the merit function of a point (z,y, z) as

I'TZ
w(x,y,z)=m+nlllell+T (13)
or
1 m—+n 1 n
Py 2) = —— ;(m)i + njz::l(pc)j (14)

where pr, and p¢ are the residuals of the Signed KKT System given by
equation (12) at point (x, y, 2).
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Next residual

Proposition
The next residual for the KKT system (3) is expressed as

(pr)e = (1 —a)(pL)es
ford =1,....,n+m.

(pc)j = (1 —a)(pc); + ap+ ala — 0)(Loo); + ?A(p, 0);,
forj=1,...,n.

pla, p, o) =

(15)
where
A(p,0) = (Lo + pL1o + poLig +0?Loo + Lo 1)

and

Loo = Az¥ Az L1 = Azt Az7 + Az AV
Lio= Az¥ A + A3 Agh Lo, = ATTAZT + A2 Ax°
L2,0 = Azt Az L()’Q = Az’ Az°

Corollary: In each iteration, if & € (0,1] and (i, o) > 0, then p(a, p, o) > 0.
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p

i=1

1
For any vector v € RP, we define v = 1_7 Z v; (The arithmetic mean of v).

it
v
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Polynomial Merit Function

Notation:
12
For any vector v € R?, we define v = — Z v; (The arithmetic mean of v).
i=1

v

o If (x*,y*, z*) is solution if (3), then p(z*, y*, 2*) =0

@ Matrices Hp e Hp and the corollary above ensure that given (x, y, 2)
interior calculated by our method, then pr(z,y,2) > 0

@ Equation (14) becomes:
¢(z,y,2) =PL+PC (16)

@ Notice that o
oLl ___ Tz

and = —
m-—+n po n

p_L:
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@ How can one predict the Merit Function value for the next point (z, 9, 2)?
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@ How can one predict the Merit Function value for the next point (z, 9, 2)?
The next merit function at iteration k is
sk k kN Ak k _ky, a k k _k
<,0(.’13 Y 2 ) sz(z Y R )+po(x Y R )
Because of equation (15) we can write

@(e, p,0) = pr(a, p, ) + po(a, p, o)

(17)
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Predicting the Next Merit

@ How can one predict the Merit Function value for the next point (Z, ¢, 2)?

Definition (Next Merit)

The next merit function at iteration k is

G(a®, ", 2%) = pr(a®,y", 2%) + po(a*, 4", 25).
Because of equation (15) we can write

@(e, p,0) = pr(a, p, ) + po(a, p, o) (17)

Proposition (Predictive Merit Function)

Using Equations (15) the predictive polynomial merit function can be expressed as the following
polynomial on variables (o, i, 7).

@(a, p,0) = (1 — ) (PE” +pc*) + o+ ol — ) Lo + @A, 0)
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Predicting the Next Merit

@ How can one predict the Merit Function value for the next point (Z, ¢, 2)?

Definition (Next Merit)

The next merit function at iteration k is

G(a®, ", 2%) = pr(a®,y", 2%) + po(a*, 4", 25).
Because of equation (15) we can write

@(e, p,0) = pr(a, p, ) + po(a, p, o) (17)

Proposition (Predictive Merit Function)

Using Equations (15) the predictive polynomial merit function can be expressed as the following
polynomial on variables (o, i, 7).

@(a, p,0) = (1 — ) (PE” +pc*) + o+ ol — ) Lo + @A, 0)

Pla, py 0 ZZZ“HZQUU

1=0 j=04¢=0
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Generalized symmetric neighborhood

@ [Colombo and Gondzio, 2008] proposed a neighborhood N, that the iterates
should comply in order to be “good”. For v € (0,1) and 8 > 1 and (z, y, z)
infeasible they define

NS(’Vvﬂ) = {(x7y32) S Q+3 ”pLH SBH 7’YT§xiZi S %’EVZ-: 17"'7”}'

(18)
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Generalized symmetric neighborhood

@ [Colombo and Gondzio, 2008] proposed a neighborhood N, that the iterates

should comply in order to be “good”. For v € (0,1) and 8 > 1 and (z, y, z)
infeasible they define

Ns(v, ) = {(xvy,Z) c ot lleell o ﬁHp%H

1
AT L xizs < -7, Vi = 1,...,n}.
0

(18)

Theorem
A point (x,y, z) interior is on Ny (7, ) if the following inequalities hold

pT(LIJ, Y, Z) S BLp?(xa Y, Z)a (19&)
_ 1_
¥oc (2, Y, 2) < (pc)i(z,y,2) < ;pc(x,yyz), (19b)
fortr =1,...,n and
B ||
g, - 21l
n pco
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@ Find («, p, o) such that it maximizes globally the next merit function
constrained to constrained to /\/'gs ,i.e.,
min_@(a, 1, 0)
(a,p,0

st. (Z,9,2) € Nys and the ratio test.
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@ Find (a, p, o) such that it maximizes globally the next merit function
constrained to constrained to Ny, , i.e.,

min a1, 0)
(a,p,0)
st. Wlasp o) 20

(PO Subproblem)
I < (Oé, K, U) <u
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PO Subproblem

@ Find (a, i1, o) such that it maximizes globally the next merit function
constrained to constrained to /\fgs , i.e.,

min P(a, p, 0)
(o,p,0)

‘ (o, p,0) >0 (PO Subproblem)
s.t.

I <(a,p,0) <u

@ Global optimization of a polynomial constrained to a set of 2n + 1
polynomials and a box

@ ¢ and v are a 2nd degree, 3 variable polynomials on variables (a, 1, o).

e o(a, p, o), under a variable transformation, can be seen as a Quadratic
function. There are cases where the Hessian is indefinite (NP-Hard
problem)
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Global optimization approach

Smart Grid using Cubic Splines
@ Order of computation: (u — o — «), since u is often zero
@ POP Subproblem can be rewritten as

%IIAI}O'I% @R(:u’ U) Hloi{Il @(O[, , U)
ot ly<p<u,  Whereor(p,o)= S KU CATRC =t
l, <o <uy lo <a<uq
(20)

@ PO subproblem can be approximately solve in a competitive time (IMA).
@ Most of constrains ¢ are not active.
e Preprocessing using Ranges and Quadratic Programming.
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Global optimization approach

Smart Grid using Cubic Splines
@ Order of computation: (u — o — «), since u is often zero
@ POP Subproblem can be rewritten as

min @R(:u’ U) min @(04 , U)
(Mva) . «
ot ly<p<u,  Whereor(p,o)= S KU CATRC =t
l, <o <uy lo <a<uq
(20)

@ PO subproblem can be approximately solve in a competitive time (IMA).
@ Most of constrains ¢ are not active.
e Preprocessing using Ranges and Quadratic Programming.

Proposition

Let (o™, u*,0™) be a global solution of the PO subproblem and (fx, &) be a global solution of
(20). Then,

pla”, p*,0") = or(fL, o)
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Numerical Highlights

@ Complete computation requires up to 3 backsolves at each iterates,
but 1 or 2 can be saved if we have a “good enough” direction.
@ Preliminary implemented method had optimal ;& = 0 in more than
80% of iterations (without centralization)
e Only two backsolves are needed in these cases

© So far, best way to evaluate the global optimization in the merit
function performed is using Smart Grid and reprocessing
constraints
@ Method is competitive with PCx: lteration count and time ranging
from 80% to 130% of PCx performance.
e Converges in ~ 70% of NETLIB problems
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Furtherwork

@ Complexity and convergence of method is being proved.
Roadmap: For o = 0 and u = nz’ z/n find & > 0 such that

P < (1~ ()"

e Following the approach of [Zhang, 1994] for infeasible
method.

e [n practice, much better improvement in each iteration.

@ There were problems where no further improvement in optimality merit
function could be obtained

e Matrices Hp and Hp can be used as scaling factors that guarantee if
( < ¢, then stop criteria of PCx is achieved.

@ Compare and test other global optimization methods for merit
(polynomial) function, which is the core of our method.

@ More robust implementations is being performed.

v
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