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Some issues in Interior-point methods

How to combine predictor, corrector and other directions to generate a
better direction?

Different types of directions need to be combined in an efficient way,
however it seems to be no magical formula valid for all problems

How to keep interactions within “good conditions”?
Iterates have to be kept within some predefined conditions (neighborhoods
of the central path, heuristics) that are successful in practice.

Some background
[Colombo and Gondzio, 2008]: conditions that iterates should meet for
good practical performance

[Jarre and Wechs, 1999]: solve a small LP (simplex) to combine
directions

[Villas-Bôas and Perin, 2003]: Postpone the choice of the barrier
parameter solving a polynomial optimization subproblem in auto-dual
framework
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Outline of our method

Develop and implement a method for Linear Programming problems that
considers the points above, but based on – and extensively using – additional
tools:

A polynomial predictive merit function that allow us to know in advance
some properties of the next iterate.
Use of [Colombo and Gondzio, 2008]’s symmetric neighborhood, that
defines conditions for the iterates, in terms of polynomial constraints

Keystone for good performance of any of their implementations

Polynomials depend on the following parameters/variables (α, µ, σ)
α is the step length,
µ is the parameter for a more general central path,
σ models the weight of the the corrector direction (predictor-corrector
method)

The merit function constrained to the symmetric neighbourhood defines a
polynomial optimizations subproblem, whose solutions give us the next
iterate in a optimal way
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Problem Formulation

The standard linear programming primal and dual problems are

min
x

cTx

s.t.

{
Ax = b

x ≥ 0

(Primal)
max
(y,z)

bT y

s.t.

{
AT y + z = b

z ≥ 0, y free

(Dual)

where A ∈ Rm×n, m ≤ n is a full rank matrix, c, x, z ∈ Rn and y, b ∈ Rm.

The first order optimality conditions for this problem, the so called KKT
conditions, can be written as 

Ax = b, (1a)

AT y + z = c, (1b)

XZe = 0, (1c)

(x, z) ≥ 0. (1d)

where X = diag(x), Z = diag(z) and e = (1, . . . , 1)T .
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Residuals

We define, for any (x, y, z), the vectors of residuals of (1), rP , rD and rC , as

rP = Ax− b, (2a)

rD = AT y + z − c, (2b)

rC = XZe. (2c)

Let (x0, y0, z0) be an initial point such as (x0, z0) > 0. Then

r0P = Ax0 − b,
r0D = AT y0 + z0 − c,
r0C = X0Z0e > 0.
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Sign of KKT

To ensure that both r0P and r0D are non negative, we define diagonal matrices HP and
HD, such as each entry of its diagonal is formed by

(HP )i =

{
1, if (r0P )i ≥ 0

−1, if (r0P )i < 0
, (HD)j =

{
1, if (r0D)j ≥ 0

−1, if (r0D)j < 0
,

for i = 1, . . . ,m and for j = 1, . . . , n.

HP r
0
P ≥ 0 and HCr

0
C ≥ 0

The solution of the KKT system (1) and of
HP (Ax− b) = 0, (3a)

HD(AT y + z − c) = 0, (3b)

XZe = 0, (3c)

(x, z) ≥ 0, (3d)

are the same.

We are only multiplying by a scalar each row of the usual KKT system.
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Homotopy continuation method

We suggest a homotopy continuation method to solve the scaled KKT system
(3) by approximately solving at each iteration, for any point (x, y, z) interior
and any µ > 0 the system

HP (Ax− b) = 0, (4a)

HD(AT y + z − c) = 0, (4b)

XZe = µe, (4c)

(x, z) > 0 (4d)
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Affine-Scale Directions

The affine-scaling (Newton) direction to approximately solve system (1) is
found when one solves the following nonlinear system


A∆xaf + rP = 0 (5a)

AT∆yaf + ∆zaf + rD = 0 (5b)

Z∆xaf +X∆zaf + rC = 0 (5c)

Solve through Normal Equations (direct method)

Involves one Cholesky factorization and one backsolve.
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Ideal direction to homotopy

Given (x, y, z) and µ > 0

How to find and ideal single step ∆w = (∆x,∆y,∆z), such as

ŵ = w + ∆w,

that is solution of 
Ax̂− b = 0

AT ŷ + ẑ − c = 0

X̂Ẑe = µe

. (6)
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Predictor-Corrector directions to homotopy

Define ∆w = ∆waf + ∆wc, where ∆waf is the affine-scaling direction
and ∆wc é the ideal corrector direction.
Using some simplifications we obtain the Nonlinear system

A∆xc = 0

AT∆yc + ∆zc = 0

X∆zc + Z∆xc + ∆X∆z = µe

(7)

Vector ∆X∆z is a second order direction similar to the ones used on
[Mehrotra, 1992, Gondzio, 1996] works.

Our contribution
For some scalar σ > 0 bounded, we are regarding the approximation

∆X∆z ≈ σ∆Xaf∆zaf

as acceptable.
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A σ-weighted correction

This approximation transforms the nonlinear system (8) into the linear
system 

A∆xc = 0

AT∆yc + ∆zc = 0

X∆zc + Z∆xc + σ∆Xaf∆zaf = µe

(8)

If σ = 1 and µ = (xaf)T (zaf)/n)3/(xT z/n) we have Mehrotra’s method

In Gondzio’s method, µ is chosen as in Mehrotra’s, however ∆X∆z is
multiple times approached by directions that are projections component
wise, the complementarity onto the neighbourhood Ns(γ).
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µ and σ directions

We can split the corrector direction as

∆wc = µ∆wµ + σ∆wσ, (9)

Why? We can write the system as

∇F (w)∆wc =

A 0 0
0 AT I
Z 0 X

∆xc

∆yc

∆zc

 =

 0
0

µe− σ∆Xaf∆zaf

 , (10)

providing the equality holds for every (µ, σ).

Find vectors ∆wµ e ∆wσ when we solve systems ∇F (w)∆wµ = (0, 0, e) e
∇F (w)∆wσ = (0, 0,−∆Xaf∆zaf) and the same Choleksy factorization that
was used on the affine-scaling direction.
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Purpose of these transformations

The next point for each variable would be

x̂ = x+ α∆x (11a)

ŷ = y + α∆y (11b)

ẑ = z + α∆z (11c)

Same Cholesky factorization to find the 3 components of ∆.

Up to three backsolves, but depending on “good direction” found
To be chosen:

(µ, σ) that defines such new directions
the step length α.

Expressed with the variables (α, µ, σ) any “educated guess” of an
ideal straight direction from a point (x, y, z) to the µ-homotopy,
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ŷ = y + α(∆yaf + µ∆yµ + σ∆yσ) (11b)
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The Residual for the Signed KKT System

Definition

We define ρ, the vector of residuals of the Signed KKT system (3) for a point
(x, y, z) as

ρ(x, y, z) =


ρP (x, y, z) = HP (Ax− b)
ρD(x, y, z) = HD(AT y + z − c)
ρC(x, y, z) = XZe

(12)

Let ρL = (ρP , ρD)T ∈ Rm+n be the linear residual of the Scaled KKT system.
We define de vectors of residuals at iteration k as ρk. By construction ρ0 > 0
for (x0, y0, z0). We also define the next (predictive) residual at iteration k as

ρ̂ = ρ(xk+1, yk+1, zk+1).
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Polynomial Merit Function

Definition (Merit Function)

We define the merit function of a point (x, y, z) as

ϕ(x, y, z) =
1

m+ n
‖ρL‖1 +

xT z

n
(13)

or

ϕ(x, y, z) =
1

m+ n

m+n∑
i=1

(ρL)i +
1

n

n∑
j=1

(ρC)j (14)

where ρL and ρC are the residuals of the Signed KKT System given by
equation (12) at point (x, y, z).
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Next residual

Proposition

The next residual for the KKT system (3) is expressed as

ρ̂(α, µ, σ) =


(ρ̂L)` = (1− α)(ρL)`,

for ` = 1, . . . , n+m.

(ρ̂C)j = (1− α)(ρC)j + αµ+ α(α− σ)(L0,0)j + α2Λ(µ, σ)j ,

for j = 1, . . . , n.
(15)

where
Λ(µ, σ) =

(
µ2L2,0 + µL1,0 + µσL1,1 + σ2L0,2 + σL0,1

)
and

L0,0 = ∆xaf∆zaf L1,1 = ∆xµ∆zσ + ∆xσ∆zµ

L1,0 = ∆xaf∆zµ + ∆zaf∆xµ L0,1 = ∆xaf∆zσ + ∆zaf∆xσ

L2,0 = ∆xµ∆zµ L0,2 = ∆xσ∆zσ

Corollary: In each iteration, if α ∈ (0, 1] and (µ, σ) > 0, then ρ(α, µ, σ) ≥ 0.
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Polynomial Merit Function

Notation:

For any vector v ∈ Rp, we define v =
1

p

p∑
i=1

vi (The arithmetic mean of v).

Remarks
If (x∗, y∗, z∗) is solution if (3), then ϕ(x∗, y∗, z∗) = 0

Matrices HP e HD and the corollary above ensure that given (x, y, z)
interior calculated by our method, then ρL(x, y, z) ≥ 0

Equation (14) becomes:

ϕ(x, y, z) = ρL + ρC (16)

Notice that

ρL =
‖ρL‖1
m+ n

and ρC =
xT z

n
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Predicting the Next Merit

How can one predict the Merit Function value for the next point (x̂, ŷ, ẑ)?

Definition (Next Merit)
The next merit function at iteration k is

ϕ̂(xk, yk, zk) = ρ̂L(xk, yk, zk) + ρ̂C(xk, yk, zk).

Because of equation (15) we can write

ϕ̂(α, µ, σ) = ρ̂L(α, µ, σ) + ρ̂C(α, µ, σ) (17)

Proposition (Predictive Merit Function)

Using Equations (15) the predictive polynomial merit function can be expressed as the following
polynomial on variables (α, µ, σ).

ϕ̂(α, µ, σ) = (1− α)(ρL
k + ρC

k) + αµ+ α(α− σ)L0,0 + α2Λ(µ, σ)

ϕ̂(α, µ, σ) =
2∑

i=0

2∑
j=0

2∑
`=0

ai,j,`α
iµjσ`
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Generalized symmetric neighborhood

[Colombo and Gondzio, 2008] proposed a neighborhood Ns that the iterates
should comply in order to be “good”. For γ ∈ (0, 1) and β > 1 and (x, y, z)
infeasible they define

Ns(γ, β) =

{
(x, y, z) ∈ Q+ :

‖ρL‖
τ
≤ β

∥∥ρ0L∥∥
τ0

, γτ ≤ xizi ≤
1

γ
τ,∀i = 1, . . . , n

}
.

(18)

Theorem
A point (x, y, z) interior is on Ngs(γ, β) if the following inequalities hold

ρL(x, y, z) ≤ βLρC(x, y, z), (19a)

γρC(x, y, z) ≤ (ρC)i(x, y, z) ≤
1

γ
ρC(x, y, z), (19b)

for i = 1, . . . , n and

βL =
β

n

∥∥ρ0L∥∥
ρC0

.
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PO Subproblem

Find (α, µ, σ) such that it maximizes globally the next merit function
constrained to constrained to Ngs , i.e.,

min
(α,µ,σ)

ϕ̂(α, µ, σ)

s.t. (x̂, ŷ, ẑ) ∈ Ngs and the ratio test.

Global optimization of a polynomial constrained to a set of 2n+ 1
polynomials and a box

ϕ̂ and ψ are a 2nd degree, 3 variable polynomials on variables (α, µ, σ).

ϕ(α, µ, σ), under a variable transformation, can be seen as a Quadratic
function. There are cases where the Hessian is indefinite (NP-Hard
problem)
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Global optimization of a polynomial constrained to a set of 2n+ 1
polynomials and a box

ϕ̂ and ψ are a 2nd degree, 3 variable polynomials on variables (α, µ, σ).

ϕ(α, µ, σ), under a variable transformation, can be seen as a Quadratic
function. There are cases where the Hessian is indefinite (NP-Hard
problem)
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Global optimization approach

Smart Grid using Cubic Splines
Order of computation: (µ→ σ → α), since µ is often zero
POP Subproblem can be rewritten as

min
(µ,σ)

ϕ̂R(µ, σ)

s.t.

{
lµ ≤ µ ≤ uµ
lσ ≤ σ ≤ uσ

where ϕ̂R(µ, σ) =

min
α

ϕ̂(α, µ, σ)

s.t.

{
ψ(α, µ, σ) ≥ 0

lα ≤ α ≤ uα

.

(20)
PO subproblem can be approximately solve in a competitive time (IMA).
Most of constrains ψ are not active.

Preprocessing using Ranges and Quadratic Programming.

Proposition
Let (α∗, µ∗, σ∗) be a global solution of the PO subproblem and (µ̄, σ̄) be a global solution of
(20). Then,

ϕ̂(α∗, µ∗, σ∗) = ϕR(µ̄, σ̄)
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Numerical Highlights

1 Complete computation requires up to 3 backsolves at each iterates,
but 1 or 2 can be saved if we have a “good enough” direction.

2 Preliminary implemented method had optimal µ = 0 in more than
80% of iterations (without centralization)

Only two backsolves are needed in these cases

3 So far, best way to evaluate the global optimization in the merit
function performed is using Smart Grid and reprocessing
constraints

4 Method is competitive with PCx: Iteration count and time ranging
from 80% to 130% of PCx performance.

Converges in ≈ 70% of NETLIB problems
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Furtherwork

Complexity and convergence of method is being proved.

Roadmap: For σ = 0 and µ = ηxT z/n find α > 0 such that

ϕk+1 < (1− θ(α))ϕk.

• Following the approach of [Zhang, 1994] for infeasible
method.
• In practice, much better improvement in each iteration.

There were problems where no further improvement in optimality merit
function could be obtained

Matrices HP and HD can be used as scaling factors that guarantee if
ϕ < ε, then stop criteria of PCx is achieved.

Compare and test other global optimization methods for merit
(polynomial) function, which is the core of our method.

More robust implementations is being performed.
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